Wei Wu 1,2Qibing Sun 1,2,*Yi Wang 1,2Yu Yang 3[ ... ]Leiran Wang 1,2,4
Author Affiliations
Abstract
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
4 e-mail: lionking@opt.ac.cn
Microresonator-based optical frequency combs are broadband light sources consisting of equally spaced and coherent narrow lines, which are extremely promising for applications in molecular spectroscopy and sensing in the mid-infrared (MIR) spectral region. There are still great challenges in exploring how to improve materials for microresonator fabrication, extend spectral bandwidth of parametric combs, and realize fully stabilized soliton MIR frequency combs. Here, we present an effective scheme for broadband MIR optical frequency comb generation in a MgF2 crystalline microresonator pumped by the quantum cascade laser. The spectral evolution dynamics of the MIR Kerr frequency comb is numerically investigated, revealing the formation mechanism of the microresonator soliton comb via scanning the pump-resonance detuning. We also experimentally implement the modulation instability state MIR frequency comb generation in MgF2 resonators covering from 3380 nm to 7760 nm. This work proceeds microresonator-based comb technology toward a miniaturization MIR spectroscopic device that provides potential opportunities in many fields such as fundamental physics and metrology.
Photonics Research
2022, 10(8): 1931
Mulong Liu 1,2Leiran Wang 1,2,*Qibing Sun 1Siqi Li 1,2[ ... ]Wei Zhao 1,2
Author Affiliations
Abstract
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 e-mail: wfuzhang@opt.ac.cn
We investigate frequency-comb generation in normal dispersion silicon microresonators from the near-infrared to mid-infrared wavelength range in the presence of multiphoton absorption and free-carrier effects. It is found that parametric oscillation is inhibited in the telecom wavelength range resulting from strong two-photon absorption. On the contrary, beyond the wavelength of 2200 nm, where three- and four-photon absorption are less detrimental, a comb can be generated with moderate pump power, or free-carriers are swept out by a positive-intrinsic-negative structure. In the temporal domain, the generated combs correspond to flat-top pulses, and the pulse duration can be easily controlled by varying the laser detuning. The reported comb generation process shows a high conversion efficiency compared with anomalous dispersion regime, which can guide and promote comb formation in materials with normal dispersion. As the comb spectra cover the mid-infrared wavelength range, they can find applications in comb-based radiofrequency photonic filters and mid-infrared spectroscopy.
Nonlinear optics, four-wave mixing Nonlinear optics, integrated optics Parametric oscillators and amplifiers Microcavities 
Photonics Research
2018, 6(4): 04000238
Author Affiliations
Abstract
State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinademy of Sciences, Xi’an 710119, China
The stochastic resonance based on optical bistability in the semiconductor optical amplifier is numerically investigated to extract a weak pulse signal buried in noise. The output property of optical bistability under different system parameters is analyzed, which determines the performance of the stochastic resonance. Through optimizing these parameters, the noise-hidden signal is extracted via stochastic resonance, in which the maximum cross-correlation gain higher than nine is obtained. This provides a novel technology for detecting a weak optical signal in various signal processing fields.
190.0190 Nonlinear optics 190.1450 Bistability 
Chinese Optics Letters
2016, 14(8): 081901
作者单位
摘要
1 中国科学院 西安光学精密机械研究所,陕西 西安 710119
2 中国科学院 研究生院,北京 100049
从系统焦点不引出主镜背后的格里高利系统出发,偏瞳后在其一次像面处加球面反射场镜来校正畸变等像差,并采纳了折轴三反射系统的结构优点,设计出一种新型无遮拦三反射光学系统。分析了该种系统的设计步骤,设计了一个焦距为900 mm,视场为0.8°×0.8°,F数为9的光学系统,总长为330 mm,成像质量接近衍射极限,具有较小尺寸、较好的杂散光抑制能力等特点。该系统与其他三反射光学系统相比,最大的优点是非球面反射镜只用了两块,降低了成本和加工装调难度。
光学设计 反射系统 离轴三反 折轴三反 
光学学报
2010, 30(4): 1144

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!